Least area Seifert surfaces and periodic knots

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knots with Infinitely Many Incompressible Seifert Surfaces

We show that a knot in S with an infinite number of incompressible Seifert surfaces contains a closed incompressible surface in its complement.

متن کامل

Immersed surfaces and Seifert fibered surgery on Montesinos knots

We will use immersed surfaces to study Seifert fibered surgery on Montesinos knots, and show that if 1 q1−1 + 1 q2−1 + 1 q3−1 ≤ 1 then a Montesinos knot K(p q1 , p2 q2 , p3 q3 ) admits no atoroidal Seifert fibered surgery.

متن کامل

Incompressibility and Least-area Surfaces

We show that if F is a smooth, closed, orientable surface embedded in a closed, orientable 3-manifold M such that for each Riemannian metric g on M , F is isotopic to a least-area surface F (g), then F is incompressible.

متن کامل

A Characterization of Quasipositive Seifert Surfaces (constructions of Quasipositive Knots and Links, Iii) Lee Rudolph

Here, a surface is smooth, compact, oriented, and has no component with empty boundary. A Seifert surface is a surface embedded in S3. A subsurface S of a surface T is full if each simple closed curve on S that bounds a disk on T already bounds a disk on S. The definition of quasipositivity is recalled in §1, after a review of braided surfaces. The “only if” statement of the Characterization Th...

متن کامل

Seifert fibered surgery on Montesinos knots

Exceptional Dehn surgeries on arborescent knots have been classified except for Seifert fibered surgeries on Montesinos knots of length 3. There are infinitely many of them as it is known that 4n + 6 and 4n + 7 surgeries on a (−2, 3, 2n + 1) pretzel knot are Seifert fibered. It will be shown that there are only finitely many others. A list of 20 surgeries will be given and proved to be Seifert ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1984

ISSN: 0166-8641

DOI: 10.1016/0166-8641(84)90003-8